Почему растворы электролитов не подчиняются законам рауля

1.Электролиты обладают способностью при растворении в со­ответствующих растворителях (например, в воде, к которой пер­воначально и относилась теория Аррениуса) диссоциировать на противоположно заряженные частицы — ионы. При этом молекулы кислот распадаются на положительные ионы водорода и отрица­тельные ионы кислотного остатка:

Таким образом, электролиты при растворении в воде распада­ются на ионы, за счет чего увеличивается число частиц. Это уве­личение числа частиц и влияет на осмотическое давление и темпе­ратуры кипения и замерзания растворов, т. е. свойства электроли­тов определяются суммой концентраций частиц — ионов и недиссоциированных молекул.

Обобщая наблюдения, Вант-Гофф пришел к выводу, что в отношении осмотического давления растворы электролитов ведут себя так, как будто они содержат больше частиц, чем это следует из аналитической концентрации. Исходя из этого, Вант-Гофф внес в уравнение (4.4) для растворов электролитов поправку, получившую название коэффициента Вант-Гоффа или изотонического коэффициента(i)

Таким образом, коэффициент i можно найти, если измерить непо­средственно осмотическое давление с помощью осмометра Пфеффера или криоскопическим методом, что значительно проще. Коэф­фициент Вант-Гоффа для неэлектролитов, растворенных в воде, равен 1, а для электролитов он больше единицы. Значение коэф­фициента растет по мере разбавления электролита. Для раство­ров, в которых имеет место ассоциация молекул растворенного вещества, коэффициент i бывает меньше единицы.

Законы Вант-Гоффа и Рауля справедливы для идеальных ра­створов, т. е. таких, в которых нет химического взаимодействия между компонентами раствора, а также диссоциации или ассоциа­ции молекул растворенного вещества. Опыт показал, что у раство­ров, проводящих электрический ток (электролиты), более высокое, чем по закону Вант-Гоффа, осмотическое давление, они кипят при более высокой температуре и замерзают при более низкой, чем это следует из закона Рауля. Такими свойствами обладают растворы солей, кислот и оснований.

Т.о., степень диссоциации слабого электролита обратно пропорциональна концентрации и прямо пропорциональна разбавлению раствора; выражение (III.24) называют законом разбавления Оствальда . Степень диссоциации слабого электролита можно связать с изотоническим коэффициентом. Будем считать, что из N молекул электролита продиссоциировало n молекул, образовав νn ионов ( ν – число ионов, на которое диссоциирует молекула). Поскольку изотонический коэффициент показывает, во сколько раз общее число молекул и ионов в растворе больше числа молекул до диссоциации, получаем:

Количественные расчеты характеристик растворов сильных электролитов осуществляют с помощью понятий активности электролита аэ и активностей катионов и анионов а+ и а соответственно, которые равны произведению коэффициента активности на концентрацию:

Качественная теория сильных электролитов была разработана П. Дебаем и Г. Хюккелем (1923). Для сильных электролитов, полностью диссоциирующих на ионы, даже при малых концентрациях растворов энергия электростатического взаимодействия между ионами достаточно велика, и пренебречь этим взаимодействием нельзя. Взаимодействие противоположно и одноименно заряженных ионов (соответственно притяжение и отталкивание) приводит к тому, что вблизи каждого иона находятся преимущественно ионы с противоположным зарядом, образующие т.н. ионную атмосферу. Радиус ионной атмосферы сравнительно велик, поэтому ионные атмосферы соседних ионов пересекаются; кроме того, каждый ион окружен дипольными молекулами растворителя – сольватной оболочкой. Т.о., в растворе сильного электролита возникает подобие пространственной структуры, что ограничивает свободу перемещения ионов и приводит к изменению свойств раствора в том же направлении, как действовало бы уменьшение степени диссоциации. Поэтому, определяя степень диссоциации раствора сильного электролита, получают т.н. кажущуюся степень диссоциации, т.е. величину α с поправкой на межионное взаимодействие. Чем выше концентрация раствора, тем сильнее взаимодействие ионов, тем меньше и кажущаяся степень диссоциации сильного электролита.

Законы Рауля и принцип Вант-Гоффа не выполняются для растворов (даже бесконечно разбавленных), которые проводят электрический ток – растворов электролитов. Обобщая экспериментальные данные, Я.Г. Вант-Гофф пришел к выводу, что растворы электролитов всегда ведут себя так, будто они содержат больше частиц растворенного вещества, чем следует из аналитической концентрации: повышение температуры кипения, понижение температуры замерзания, осмотическое давление для них всегда больше, чем вычисленные. Для учета этих отклонений Вант-Гофф внес в уравнение (III.16) для растворов электролитов поправку – изотонический коэффициент i :

Процесс диссоциации слабых электролитов является обратимым и в системе существует динамическое равновесие, которое может быть описано константой равновесия, выраженной через концентрации образующихся ионов и непродиссоциировавших молекул, называемой константой диссоциации . Для некоторого электролита, распадающегося в растворе на ионы в соответствии с уравнением:

1. Электролиты обладают способностью при растворении в соответ­ствующих растворителях (например, в воде, к которой первоначально и относилась теория Аррениуса) диссоциировать на противоположно заряженные частицы – ионы. При этом молекулы кислот распадаются на положительные ионы водорода и отрицательные ионы кислотного остатка: H2SO4=2H + +SO4 2- .

Обобщая наблюдения, Вант-Гофф пришел к выводу, что в отношении осмотического давления растворы электролитов ведут себя так, как будто они содержат больше частиц, чем это следует из аналитической концентрации. Исходя из этого, СЛ. 1 (0) Вант-Гофф внес в соответствующие уравнения для растворов электролитов поправку, получившую название коэффи­циента Вант-Гоффа или изотонического коэффициента (i). При этом Р = iСRТ.

Коэффициент Вант-Гоффа для неэлектролитов, растворенных в воде, равен 1, а для электролитов он больше единицы. Значение коэф­фициента растет по мере разбавления электролита. Для растворов, в которых имеет место ассоциация молекул растворенного вещества, коэффициент iбывает меньше единицы.

Таким образом, электролиты при растворении в воде распадаются на ионы, за счет чего увеличивается число частиц. Это увеличение числа частиц и влияет на осмотическое давление и температуры кипения и за­мерзания растворов, т. е. свойства электролитов определяются суммой концентраций частиц — ионов и недиссоциированных молекул.

Законы Вант-Гоффа и Рауля справедливы для идеальных раст­воров, в которых не происходит химическое взаимодействие между компонентами раствора, а также диссоциация или ассоциация молекул растворенного вещества. Однако опыт показывает, что не все растворы подчиняются этим законам. Установлено, что растворы, которые способны проводить электрический ток (электролиты), имеют более высокое, чем по закону Вант-Гоффа, осмотическое давление. Эти раст­воры кипят при более высокой температуре и замерзают при более низкой, чем это следует из закона Рауля. Такими свойствами обладают растворы солей, кислот и оснований.

Коллигативные свойства растворов

Если в некотором растворителе растворить нелетучее вещество, то равновесное давление паров растворителя при этом понижается, т.к. присутствие какого – либо вещества, растворенного в этом растворителе, затрудняет переход частиц растворителя в паровую фазу.

Ф.М. Рауль доказал, что повышение температуры кипения, так же как и понижение температуры замерзания разбавленных растворов нелетучих веществ, прямо пропорционально моляльной концентрации раствора и не зависит от природы растворённого вещества. Это правило известно как Второй закон Рауля:

Любому раствору характерны те или иные физические свойства, к которым относятся и коллигативные свойства растворов. Это такие свойства, на которые не оказывает влияние природа растворенного вещества, а зависят они исключительно от количества частиц этого растворенного вещества.

То есть, изотонический коэффициент показывает, разницу содержания частиц в растворе электролита по сравнению с раствором неэлектролита такой же концентрации. Он тесно связан связан с процессом диссоциации, точнее, со степенью диссоциации и выражается следующим выражением:

Растворы электролитов не подчиняются Законам Рауля. Но для учёта всех несоответствий Вант-Гофф предложил ввести в приведённые уравнения поправку в виде изотонического коэффициента i, учитывающего процесс распада на ионы молекул растворённого вещества:

Зако; ны Ра; уля в применении к электролитам

Константа гидролиза— константа равновесия гидролитической реакции. В общем случае для соли, образованной слабой кислотой и сильным основанием: Kг=KH2O/Ka, где Ka — константа диссоциации слабой кислоты, образующейся при гидролизе. Для соли, образованной сильной кислотой и слабым основанием: Kг=KH2O/Kb, где Kb — константа диссоциации слабого основания, образующегося при гидролизе. Для соли, образованной слабой кислотой и слабым основанием: Kг=KH2O/Ka*Kb.

Равновесие этой реакции сильно смещено влево. Константу диссоциации воды можно вычислить по формуле: K=[H + ][OH — ]/ [H2O](1),где: [H+] — концентрация ионов гидроксония (протонов); [OH−] — концентрация гидроксид-ионов; [H2O] — концентрация воды (в молекулярной форме) в воде; Концентрация воды в воде, учитывая её малую степень диссоциации, величина практически постоянная и составляет (1000 г/л)/(18 г/моль) = 55,56 моль/л. При 25 °C константа диссоциации воды равна 1,8×10−16моль/л. Уравнение (1) можно переписать как: K[H2O]= [H + ][OH — ]

Теория электролитической диссоциации Аррениуса.Кислоты — это вещества, образующие в водном растворе ионы гидратированные катионы водорода Н+ (ионы гидроксония) и анионы кислотного остатка. Основания — вещества, диссоциирующие в водном растворе с образованием катионов металла и гидроксид-анионов ОН−. Соли — вещества, диссоциирующие с образованием катиона металла и аниона кислотного остатка. В реакции кислоты с основанием (реакция нейтрализации образуется соль и соли и воды. Кислота -HCl (кислотный остаток Cl-): HCl + H2O ↔ H3O+ + Cl- Основание — NaOH:

Коллоидными растворами называются гетерогенные дисперсные системы, в которых частицы «растворенного» вещества обладают ультрамикроскопической (коллоидной) степенью дробления. Поперечник частиц дисперсной фазы в этих системах лежит в пределах 1 -100 нм.

Рекомендуем прочесть:  Как выглядит свидетельство на квартиру

Индика́тор— соединение, позволяющее визуализировать изменение концентрации какого-либо вещества или компонента, например, в растворе при титровании, или быстро определить pH, еН и др. параметры. Существуют также химические индикаторы для самых различных специальных целей, например, для определения дозы облучения. Виды индикаторов.Кислотно-основные индикаторы, Редокс-индикаторы, Ох- и Red-формы которых имеют различный цвет, Металлоиндикаторы, Адсорбционные индикаторы.

Почему растворы электролитов не подчиняются законам рауля

количественно выражает связь между концентрацией растворенного вещества в растворе и давлением насыщенного пара растворителя над раствором. Его называют законом Рауля:понижение давления насыщенного пара растворителя А над раствором ?РАпропорционально мольной доле растворенного нелетучего вещества ·Nв.

Соответственно, образование этих растворов не сопровождается тепловым эффектом (?Н = 0) и каждый компонент ведет себя в растворе независимо от других компонентов. К идеальным растворам по своим свойствам приближаются лишь очень разбавленные растворы, т.е. растворы с очень низкой концентрацией растворенного вещества.

Если бы электролиты полностью диссоциировали на ионы, то коллигативные свойства растворов электролитов всегда были бы в целое число раз больше значений, наблюдаемых в растворах неэлектролитов. Но еще Вант–Гофф установил, что коэффициент i выражается дробными числами, которые с разбавлением раствора возрастают, приближаясь к целым числам.

Вант–Гофф установил, что коэффициент i зависит от природы растворенного вещества, а иногда и от концентрации раствора, но каков физический смысл этого коэффициента он не знал. Далее было установлено, что для расчета давления насыщенного пара над раствором, повышения температуры кипения или понижения температуры замерзания растворов электролитов в соответствующие уравнения вводиться коэффициент i:

Из закона Рауля возникают два следствия. Согласно одному из них температура кипения раствора выше температуры кипения растворителя. Это обусловлено тем, что давление насыщенного пара растворителя над раствором становится равным атмосферному давлению (условие кипения жидкости) при более высокой температуре, чем в случае чистого растворителя.

Почему растворы электролитов не подчиняются законам рауля

Процесс диффузии будет идти до тех пор, пока не получится полностью гомогенная система, т.е. пока весь растворитель не перейдет в раствор. Однако по мере диффузии растворителя объем раствора увеличивается и возрастает давление на мембрану со стороны раствора. Таким образом, возникает гидростатическое давление, препятствующее диффузии растворителя.

Равновесное давление паров жидкости имеет тенденцию к увеличению с ростом температуры, жидкость начинает кипеть, при уравнивании давления ее паров и внешнего давления. При наличии нелетучего вещества, давление паров раствора снижается, и раствор будет закипать при более высокой температуре, по сравнению с температурой кипения чистого растворителя.

С). Растворимость веществ зависит от природы растворенного вещества, изменяется от температуры и давления (газов). Для повышения растворимости необходимо учитывать тепловой эффект процесса растворения. Если процесс эндотермический, то вещества лучше растворяются с повышением температуры, если экзотермический, то – с понижением температуры.

Однако наиболее универсальный и полностью формальный способ учета неидеальности компонентов раствора был предложен Г. Льюисом в 1907 г., который сохранил ту же форму выражения химического потенциала компонента в реальном растворе, что и в идеальном, но вместо концентрации компонента использовал в нем активности.

Коллигативные свойства растворов – это свойства, которые зависят от числа частиц растворенного в веществе и не зависят от его природы: 1. Понижение давления насыщенного пара (ДНП) над раствором 2. Понижение температуры замерзания раствора (Δ t з) и повышение температуры кипения раствора (Δ (Δ t к)к) 3.

Коллигативные свойства разбавленных растворов

Изотонический коэффициент i. Растворы электролитов не подчиняются законам Рауля и Вант-Гоффа вследствие распада на ионы и увеличении числа кинетически активных частиц. Вант-Гофф ввел поправку для электролитов в виде изотонического коэффициента i.

Коллигативные свойства растворов – это свойства, которые определяются числом частиц растворенного вещества в единице объема раствора и не зависят от природы вещества. К ним относятся: диффузия, осмотическое давление, давление насыщенного пара растворителя над раствором, температура замерзания раствора, температура кипения раствора.

Диффузия –самопроизвольный процесс переноса вещества в результате беспорядочного теплового движения кинетических единиц. Под кинетическими единицами понимают ионы, молекулы, атомы, ассоциаты, комплексы и т.д. Количественно диффузия выражается законом Фика: Скорость диффузии прямо пропорциональна градиенту концентрации и площади, через которую осуществляется диффузия.

31. Эксперименты по исследованию 0,01М водных растворов сахарозы, глюкозы, глицерина показали, что понижение температуры замерзания у них равны 0,0186 0 С. Почему понижение температуры замерзания водного раствора NaCl оказалось в 2 раза больше, раствора СаCl2 в три раза больше, а раствора AlCl3 в четыре раза больше.

30. Температура замерзания кровяной сыворотки равна (- 0,56 0 С). Рассчитайте моляльность солей в крови, условно считая все соли бинарными и полностью распадающимися на ионы по схеме: КtAn→ Кt + + Аn − . Наличие в сыворотке крови неэлектролитов во внимание не принимать.

Закон Рауля, в чем он состоит, положительные и отрицательные отклонения

Закон Рауля был предложен французским химиком Франсуа-Мари Раулем в 1887 году и служит для объяснения поведения давления паров раствора двух смешивающихся веществ (обычно идеальных) в зависимости от парциального давления паров каждого компонента, присутствующего в этом.

  • 1 Из чего он состоит??
  • 2 положительных и отрицательных отклонения
    • 2.1 Положительные отклонения
    • 2.2 Отрицательные отклонения
  • 3 примера
    • 3.1 Основная смесь
    • 3.2 Бинарная смесь с нелетучим растворенным веществом
  • 4 Ссылки

Этот закон связывает давление паров раствора с нелетучим растворенным веществом, утверждая, что оно будет равно давлению паров этого чистого растворенного вещества при этой температуре, умноженному на его молярную долю. Это выражается в математических терминах для одного компонента следующим образом:

Используя объяснение, основанное на взаимодействиях между молекулами газов (или жидкостей), для прогнозирования поведения давлений пара, этот закон используется для изучения неидеальных или реальных решений, при условии, что необходимые коэффициенты рассматриваются для корректировки модели. математический и приспособить его к неидеальным условиям.

Закон Рауля основан на предположении, что соответствующие решения ведут себя идеальным образом: это происходит потому, что этот закон основан на идее, что межмолекулярные силы между различными молекулами такие же, как между одинаковыми молекулами (которые это не так удачно в реальности).

Коэффициенты пропорциональности К и Е в приведённых выше уравнениях — соответственно криоскопическая и эбулиоскопическая постоянные растворителя, имеющие физический смысл понижения температуры кристаллизации и повышения температуры кипения раствора с концентрацией 1 моль/кг. Для воды они равны 1.86 и 0.52 K·моль −1 ·кг соответственно. Поскольку одномоляльный раствор не является бесконечно разбавленным, второй закон Рауля для него в общем случае не выполняется, и величины этих констант получают экстраполяцией зависимости из области малых концентраций до m = 1 моль/кг.

Растворы, для которых выполняется закон Рауля, называются идеальными. Идеальными при любых концентрациях являются растворы, компоненты которых очень близки по физическим и химическим свойствам (оптические изомеры, гомологи и т. п.), и образование которых не сопровождается изменением объёма и выделением либо поглощением теплоты. В этом случае силы межмолекулярного взаимодействия между однородными и разнородными частицами примерно одинаковы, и образование раствора обусловлено лишь энтропийным фактором.

  • Относительное понижение парциального давления пара растворителя над раствором не зависит от природы растворённого вещества и равно его мольной доле в растворе.

>P^o _A — P_A <\rm<)>>> \over > = X_B» width=»» height=»» />

Условием кристаллизации является равенство давления насыщенного пара растворителя над раствором давлению пара над твёрдым растворителем. Поскольку давление пара растворителя над раствором всегда ниже, чем над чистым растворителем, это равенство всегда будет достигаться при температуре более низкой, чем температура замерзания растворителя. Так, океанская вода начинает замерзать при температуре около минус 2 °C.

Реальные растворы с положительными отклонениями от закона Рауля образуются из чистых компонентов с поглощением теплоты (объём раствора оказывается больше, чем сумма исходных объёмов компонентов (ΔV > 0). Растворы с отрицательными отклонениями от закона Рауля образуются с выделением теплоты (ΔНраств Второй закон Рауля

Многие свойства растворов, такие, как осмотическое давление, температура кипения и замерзания, давление насыщенного пара, зависят как от концентрации раствора, т. е. от числа растворенных в нем частиц, так и от взаимного влияния этих частиц друг на друга. Степень взаимодействия частиц в растворе тем выше, чем больше плотность их зарядов и чем меньше среднее рас­стояние между ними.

В растворах некоторых электролитов диссоциирует лишь часть молекул. Для количественной характеристики электролитической диссоциации было введено понятие степени диссоциации. Отношение числа молекул, диссоциированных на ионы, к общему числу молекул растворенного электролита называется степенью диссоциации а. По степени диссоциации в растворах все электролиты делятся на две группы. К первой относят электролиты, степень диссоциации которых в растворах равна еди­нице и почти не зависит от концентрации раствора. Их называют сильными электролитами. К сильным электролитам в вод­ных растворах принадлежит подавляющее большинство солей, щело­чей, в также некоторые кислоты.

Рекомендуем прочесть:  Как предоставляются льготы пенсионерам ветеранам труда проживающим в одном доме и находящиеся в разводе

Константа диссоциации зависит от природы диссоциирующего вещества и растворителя, а также от температурь и не зависит от концентрации раствора. С повышением температуры константа дис­социации обычно уменьшается, что в соответствии с принципом Ле Шателье свидетельствует об экзотермическим характере реакции.

Электролиты, степень диссоциации которых в растворах меньше единицы и уменьшается с ростом концентрации, называют слабы­ми электролитами. К ним относят воду, ряд кислот, основания р-, d- и f-элементов. Между этими двумя группами нет четкой границы, одно и то же вещество в одном растворителе проявляет свойства сильного, а в другом — слабого электролита. Например, хлорид лития и иодид натрия, имеющие ионную кристаллическую решетку,
при растворении в воде ведут себя как типичные сильные электролиты,
при растворении же в ацетоне или уксусной кислоте эти вещества
являются слабыми электролитами со степенью диссоциации в раствоpax меньше единицы.

В растворах слабых электролитов взаимодействие ионов друг с другом относительно невелико вследствие их незначительной кон­центрации. Сильные электролиты в растворах диссоциированы прак­тически полностью. Поэтому в уравнении диссоциации электролита стрелка указывает только на прямой процесс, например:

Растворы электролитов

Обобщая экспериментальные данные, Вант-Гофф пришел к выводу, что растворы электролитов всегда ведут себя так, будто они содержат больше частиц растворенного вещества, чем следует из аналитической концентрации: повышение температуры кипения, понижение температуры замерзания и осмотическое давление для них всегда больше, чем вычисленные.

Константа Kв, равная произведению концентраций протонов и гидроксид-ионов, называется ионным произведением воды. Она является постоянной не только для чистой воды, но также и для разбавленных водных растворов веществ. C повышением температуры диссоциация воды увеличивается, следовательно, растёт и Kв, при понижении температуры — наоборот.

ЛЕКЦИЯ № 3

Титр – число растворенного вещества в одном миллилитре раствора. Существует титриметрический анализ – метод количественного анализа, при котором содержание определяемого вещества Х рассчитывают на основании измерения количества реактива, затраченного на взаимодействие с Х, выполнение реакции в титриметрическом анализе является конечной стадией анализа. Пример: объем кислоты оттитруем щелочью каплями до исчезновения окрас-ки – полная нейтрализация. При титровании

Коллоидные растворы – микрогетерогенные системы, занимают промежуточное положение между истинными растворами и взвесями. Растворы состоят из растворенного вещества и растворителя. Растворителем считают тот компонент, который преобладает в растворе. Свойства растворов зависят от концентрации. Рассмотрим способы выражения концентрации растворов.

Рассмотрим закон Вант-Гоффа: осмотическое давление раствора численно равно тому давлению, которое производило бы данное количество растворенного вещества, если бы оно в виде идеального газа занимало при данной температуре объем, равный объему раствора.

В истинном растворе распределенное в среде вещество диспергировано до атомного или молекулярного уровня. Примеры многочисленны: газообразный раствор – воздух, состоящий из главного компонента азота – 78% N2; сплавы, представляющие собой твердые растворы, например, медные Cu – Zn, Cu – Cd, Cu – Ni и др.

То вещество, которое растворяется с понижением температуры, увеличивает свою растворимость. Рассмотрим растворимость некоторых веществ. Пример, NH4NO3 – нитрат аммония, растворимость падает до нуля, эндотермический эффект реакции. Рассмотрим стадии подробно: на первой стадии – эффект разрушения кристаллической решетки, эндотермический. На второй – равномерное распределение по объему с водой, гидратация – экзотермический.

Для наблюдения за электропроводностью растворов применяется установка, состоящая из двух графитовых электродов, которые погружают в исследуемый раствор. В электрической цепи находится лампочка, которая загорается в случае, если исследуемый раствор проводит электрический ток. Т.е. свечение лампочки указывает на то, что растворенное в воде вещество является электролитом. Результаты наблюдений представить в виде таблицы:

Осмос – это односторонняя диффузия растворителя через полупроницаемую мембрану, отверстия которой обладают более высокой проницаемостью для чистого растворителя. При осмосе растворитель переходит из раствора с меньшей концентрацией в раствор с большей концентрацией. Давление, которое нужно приложить к раствору для прекращения осмоса из чистого растворителя в раствор, называется осмотическим давлением. Осмотическое давление разбавленных растворов неэлектролитов описывает закон Вант-Гоффа:

Явление осмоса играет очень важную роль в живой природе. Оболочки клеток представляют собой мембраны, легко проницаемые для воды, но почти непроницаемые для веществ, растворенных во внутриклеточной жидкости. Проникая в клетки, вода создает в них избыточное давление, которое поддерживает оболочки клеток в напряженном состоянии. Вот почему травянистые стебли, листья, лепестки цветов обладают упругостью. Если срезать растение, то вследствие испарения воды объем внутриклеточной жидкости уменьшается, растение вянет. Но если начавшее вянуть растение поставить в воду, начнется осмос, оболочки клеток снова напрягаются и растение принимает прежний вид. Осмос является также одной из причин, обусловливающих поднятие воды по стеблю растения.

Коллигативные свойства растворов электролитов не подчиняются законам Рауля и Вант-Гоффа, так как диссоциация электролита приводит к тому, что общее число частиц растворенного вещества в растворе возрастает по сравнению с раствором неэлектролита той же концентрации. Число частиц в растворе электролита учитывают, вводя изотонический коэффициент ( ). Таким образом, для растворов электролитов законы, описывающие коллигативные свойства, имеют вид:

При образовании раствора изменяются не только свойства растворенного вещества, но и растворителя. Изменение цвета и объема раствора зависят от природы растворенного вещества, а изменение температур кипения и замерзания раствора, его осмотическое давление зависят только от природы растворителя и концентрации растворенного вещества. Такие свойства растворов называются коллигативными.

4. Объясняет отклонения растворов электролитов от законов Рауля и Вант-Гоффа. Это связано со способностью молекул элекиролита диссоциировать на ионы. Понижение температуры кристаллизации и повышении температуры кипения зависит исклюсительно от числа растворённых частиц.

Однако теория Аррениуса не учитывала всей сложности явлений в растворах. В частности, она рассматривала ионы как свободные, независимые от молекул растворителя частицы. Этой теории противостояла химическая теория растворов Менделеева, в основе которой лежало представление о взаимодействии растворённого вещества с растворителем. В преодалении кажущегося противоречия обеих теорий большая заслуга принадлежит русскому учёному Каблукому, впервые высказавшему предположение о гидратации ионов. Развитие это идеи привело в дальнейшем к объединению этих теорий.

Электролиты — это вещества, растворы и расплавы которых проводят электрический ток (кислоты, соли, щёлочи). Эти растворы сильно отклоняются от всех рассмотренных законов. Для них осмотическое давление, понижение давления пара, изменения температур кипения и замерзания всегда больше, чем это отвечает концентрации раствора. Например, понижение температуры замерзания раствора, содержащего 1г NaCl в 100 г воды, почти вдвое превышает изменение температуры замерзания, вычисленное по законам Рауля. Во столько же раз и осмотическое давление этого раствора больше теоретической величины. Чтобы распространить уравнение осмотического давления на растворы электролитов, Вант-Гофф ввёл в него поправочный коэффициент i (изотонический коэффициент), показывающий, во сколько раз осмотическое давление данного раствора больше «нормального»: . Коэффициент i определяется для каждого раствора экспериментальным путём — например по понижению давления пара, или по понижению температуры замерзания, или по повышению температуры кипения:

3. Ионы движутся беспорядочно, но при пропускании электрического тока приходят в направленное движение. Положительно заряженные ионы движутся к катоду и называются катионами (металлы и водород); отрицательно заряженные ионы движутся к аноду и называются анионами (кислотные остатки и гидроксид ионы).

В зависимости от структуры растворяющегося вещества в безводном состоянии его диссоциация протекает по-разному. Наиболее типичны при этом два случая. Один из них это диссоциация растворяющихся солей, т.е. кристаллов с ионной связью в молекуле, второй — диссоциация при растворении кислот, т.е. веществ, состоящих из полярных молекул с ковалентной связью.

ЛЕКЦИЯ № 3

Концентрация – количество растворенного вещества, содержащееся в определенном количестве раствора или растворителя. При определении концентрации растворов используются различные методы аналитической химии: весовые, объемные, а также методы, основанные на измерении плотности, показателя преломления и других физико-химических свойств.

Фугитивность можно определить как давление, которое должна производить данная реальная система, чтобы оказывать такое же действие, как и идеальная. Она характеризует отклонение от идеального состояния и, подобно давлению для идеального газа, может рассматриваться как мера рассеиваемости вещества. С приближением реального газа к идеальному состоянию/по величине приближается к Р, так что для идеального газа при всех давлениях обе величины становятся равными, то есть:

Газ + H2O > 3,5 объема О2 в одном объеме Н2О экзотермический процесс. С повышением температуры растворимость некоторых газов уменьшается. При постоянной температуре и невысоком давлении растворимость газов, не вступающих в химическое взаимодействие с растворителем, подчиняется закону Генри – Дальтона, который состоит из нескольких частей.

Осмос – явление селективной диффузии определенного сорта частиц через полупроницаемую перегородку. Это явление впервые описал аббат Нолле в 1748 г. Перегородки, проницаемые только для воды или другого растворителя и непроницаемые для растворенных веществ, как низкомолекулярных, так и высокомолекулярных, могут быть изготовлены из полимерных пленок (коллодия) или гелеобразных осадков, например, ферроцианида меди Cu2[Fe(CN)6]; этот осадок образуется в порах перегородки стеклянного фильтра при погружении пористого материала сначала в раствор медного купороса (CuSO4 x 5H2O), а затем желтой кровяной соли K2[Fе(CN)6] . Вещества диффундируют через такую перегородку, что является важным случаем осмоса, позволяющим измерять осмотическое дав-ление, т. е. осмотическое давление – мера стремления растворенного вещества перейти вследствие теплового движения в процессе диффузии из раствора в чистый растворитель; распределяется равномерно по всему объему растворителя, понизив первоначальную концентрацию раствора.

Рекомендуем прочесть:  Есть Ли Льготы У Мастера

Рассмотрим закон Вант-Гоффа: осмотическое давление раствора численно равно тому давлению, которое производило бы данное количество растворенного вещества, если бы оно в виде идеального газа занимало при данной температуре объем, равный объему раствора.

Билет №27

3. Ионы движутся беспорядочно, но при пропускании электрического тока приходят в направленное движение. Положительно заряженные ионы движутся к катоду и называются катионами (металлы и водород); отрицательно заряженные ионы движутся к аноду и называются анионами (кислотные остатки и гидроксид ионы).

Однако теория Аррениуса не учитывала всей сложности явлений в растворах. В частности, она рассматривала ионы как свободные, независимые от молекул растворителя частицы. Этой теории противостояла химическая теория растворов Менделеева, в основе которой лежало представление о взаимодействии растворённого вещества с растворителем. В преодалении кажущегося противоречия обеих теорий большая заслуга принадлежит русскому учёному Каблукому, впервые высказавшему предположение о гидратации ионов. Развитие это идеи привело в дальнейшем к объединению этих теорий.

В зависимости от структуры растворяющегося вещества в безводном состоянии его диссоциация протекает по-разному. Наиболее типичны при этом два случая. Один из них это диссоциация растворяющихся солей, т.е. кристаллов с ионной связью в молекуле, второй — диссоциация при растворении кислот, т.е. веществ, состоящих из полярных молекул с ковалентной связью.

Электролиты — это вещества, растворы и расплавы которых проводят электрический ток (кислоты, соли, щёлочи). Эти растворы сильно отклоняются от всех рассмотренных законов. Для них осмотическое давление, понижение давления пара, изменения температур кипения и замерзания всегда больше, чем это отвечает концентрации раствора. Например, понижение температуры замерзания раствора, содержащего 1г NaCl в 100 г воды, почти вдвое превышает изменение температуры замерзания, вычисленное по законам Рауля. Во столько же раз и осмотическое давление этого раствора больше теоретической величины. Чтобы распространить уравнение осмотического давления на растворы электролитов, Вант-Гофф ввёл в него поправочный коэффициент i (изотонический коэффициент), показывающий, во сколько раз осмотическое давление данного раствора больше «нормального»: . Коэффициент i определяется для каждого раствора экспериментальным путём — например по понижению давления пара, или по понижению температуры замерзания, или по повышению температуры кипения:

4. Объясняет отклонения растворов электролитов от законов Рауля и Вант-Гоффа. Это связано со способностью молекул элекиролита диссоциировать на ионы. Понижение температуры кристаллизации и повышении температуры кипения зависит исклюсительно от числа растворённых частиц.

Почему растворы электролитов не подчиняются законам рауля

Рассмотрим модель идеального раствора. Раствор называется идеальным, если в нем отсутствует взаимодействие между частицами (молекулами, атомами, ионами). Растворы неэлектролитов – частицы, плохо растворимые в воде, так как нет носителя электрического заряда. Закон Рауля справедлив только для разбавленных растворов неэлектролитов.

Как замерзают растворы Если охладить раствор какой-либо соли в воде, то обнаружится, что температура замерзания понизилась. Нуль градусов пройден, а затвердевание не происходит. Только при температуре на несколько градусов ниже нуля в жидкости появятся кристаллики. Это

XIII. Растворы Что такое раствор Если посолить бульон и размешать ложкой, то не останется и следов соли. Не следует думать, что крупинок соли просто не видно невооруженным глазом. Кристаллики соли никаким способом не удастся обнаружить по той причине, что они растворились.

Закон Рэлея К концу 1899 г. были проведены более точные измерения в области более длинных волн, которые показали, что в этой области закон Вина уже несправедлив. В июне того же года лорд Рэлей (который был при рождении Джоном Вильямом Стрэтгом (1842-1919)) опубликовал вывод закона

Закон Архимеда Подвесим гири к безмену. Пружина растянется и покажет вес гири. Не снимая гири с безмена, опустим ее в воду. Изменится ли показание безмена? Да, вес тела как бы уменьшится. Если опыт проделать с килограммовой железной гирей, то «уменьшение» веса составит

Электролиты отличаются от так называемых идеальных растворов рядом специфических свойств. Осмотическое давление, понижение точки замерзания и повышение точки кипения электролитов гораздо больше зависят от концентрации, чем этого следовало ожидать по законам Рауля — Вант-Гоффа. Эти отклонения получили объяснение только после того, как в 1887 г. Сванте Аррениус высказал гипотезу об электролитической диссоциации. Основные положения теории электролитической диссоциации сводятся к следующему [c.33]

В конце прошлого века Рауль, Вант-Гофф, Аррениус установили законы, связывающие концентрацию раствора нелетучего вещества с такими его свойствами, как осмос, понижение давления пара растворителя, понижение температуры замерзания и повышение температуры кипения. Эти свойства зависят только от количества частиц растворенного вещества, но не от его природы, они называются коллигативными свойствами. Растворы, подчиняющиеся законам Рауля и Вант-Гоффа, часто называются идеальными растворами. Эго — сильно разбавленные (теоретически — предельно разбавленные) растворы неэлектролитов с мольной долей 0,005. Теория идеальных растворов отличается простотой, так как молекулы компонентов раствора никак не взаимодействуют друг с другом. Изучение предельно разбавленных растворов так же необходимо, как, например, изучение идеальных газов. Свойства этих растворов используются для определения молекулярной массы растворенного вещества, активности и коэффициента активности. [c.202]

В конце прошлого века Рауль, Вант-Гофф, Аррениус установили законы, связывающие концентрацию раствора нелетучего вещества с такими его свойствами, как осмос, понижение давления пара растворителя, понижение температуры замерзания и повышение температуры кипения. Эти свойства зависят только от количества частиц растворенного вещества, но не от его природы, они называются коллигативными свойствами. Растворы, подчиняющиеся законам Рауля и Вант-Гоффа, часто называются идеальными растворами. Это — сильно разбавленные (теоретически — предельно разбавленные) растворы неэлектролитов с мольной долей 0,005. Теория идеальных растворов отличается [c.202]

Существует большая группа методов, связанных с осмотическим давлением и предусматривающих определение молекулярной массы в растворе. Так как для разбавленных растворов справедливо правило Рауля—Вант-Гоффа, согласно которому осмотическое давление прямо пропорционально молярной концентрации, то для определения молекулярной массы принципиально пригодны все величины, находящиеся в простой зависимости от осмотического давления. Обычно пользуются такими величинами, которые поддаются простому и легкому измерению понижение точки замерзания растворов, повышение точки кипения растворов и депрессия точки плавления смесей (твердых растворов). В нефтяной практике наиболее широкое распространение получил криоскопический метод, основанный на измерении понижения температуры замерзания растворителя при добавлении к нему исследуемого вещества. [c.127]

Изотонические растворы– имеют равное осмотическое давление. Гипертонические растворы– имеют большее осмотическое давление по сравнению с другим раствором. Гипотонические растворы– имеют меньшее осмотическое давление по сравнению с другим раствором.

Температурой кипения жидкости называют ту температуру, при которой давление насыщенного пара над данной жидкостью равно внешнему. При этой температуре и соответствующем ей давлении насыщенного пара устанавливается равновесие между жидкой и газообразной фазами (скорость испарения равна скорости конденсации), и обе эти фазы могут сосуществовать в течение длительного времени. Если жидкость – индивидуальное вещество и внешнее давление не меняется, то кипение ее в открытом сосуде происходит при постоянной температуре до тех пор, пока полностью не исчезнет жидкая фаза. Температура, при которой данная жидкость кипит в условиях давления 101325 Па, называют нормальной температурой кипения.

Закон Рауля, как и закон Вант-Гоффа, справедлив только для идеальных растворов, причем имеется в виду, что растворяемое вещество значительно менее летуче, чем растворитель (температура кипения его по меньшей мере на 150–200° должна быть ниже, чем температура кипения растворителя).

Идеальными называются растворы, при образовании которых не происходит изменения энтальпии и объема системы, не идут химические реакции между компонентами, а силы межмолекулярного взаимодействия между всеми компонентами одинакова. Наиболее близки к идеальным – разбавленные растворы неэлектролитов.

Осмотическое давление растет с увеличением концентрации раствора и температуры, т.е. следует примерно тому же закону, что и зависимость давления газа от тех же факторов. Вант-Гофф (1887) установил закон, согласно которому осмотическое давление раствора равно тому давлению, которое производило бы растворенное вещество, если бы оно при той же температуре находилось в газообразном состоянии и занимало объем, равный объему раствора.

Для растворов электролитов в уравнение для расчета осмотического давления необходимо ввести дополнительный поправочный коэффициент i, называемый изотоническим коэффициентом Вант-Гоффа, который равен отношению числа отдельных частиц (нормальных молекул, ионов или более простых дочерних молекул) N1 к общему числу молекул растворенного вещества N) в объеме раствора: