Общее уравнение плоскости через 3 точки

Уравнения плоскости: общее, через три точки, нормальное

Если известна какая-нибудь точка плоскости P и какой-нибудь вектор нормали к ней, то этими двумя условиями плоскость в пространстве вполне определена (через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору). Общее уравнение плоскости будет иметь вид:

2. При A = 0 уравнение определяет плоскость, параллельную оси Ox, поскольку вектор нормали этой плоскости перпендикулярен оси Ox (его проекция на ось Ox равна нулю). Аналогично, при B = 0 плоскость параллельная оси Oy, а при C = 0 плоскость параллельна оси Oz.

Итак, условия, которыми задаётся уравнение плоскости, есть. Чтобы получить само уравнение плоскости, имеющее приведённый выше вид, возьмём на плоскости P произвольную точку M с переменными координатами x, y, z. Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис. 1). Для этого, согласно условию перпендикулярности векторов, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, то есть

5. При A = B = D = 0 уравнение (или z = 0) определяет координатную плоскость xOy, так как она параллельна плоскости xOy (A = B = 0) и проходит через начало координат (D = 0). Аналогично, уравнение y = 0 в пространстве определяет координатную плоскость xOz, а уравнение x = 0 — координатную плоскость yOz.

Пусть даны три различные точки , и , не лежащие на одной прямой. Так как указанные три точки не лежат на одной прямой, векторы и не коллинеарны, а поэтому любая точка плоскости лежит в одной плоскости с точками , и тогда и только тогда, когда векторы , и компланарны, т.е. тогда и только тогда, когда смешанное произведение этих векторов равно нулю.

Это будет означать, что смешанное произведение векторов M 1 M → , M 1 M 2 → , M 1 M 3 → будет равно нулю: M 1 M → · M 1 M 2 → · M 1 M 3 → = 0 , поскольку это является основным условием компланарности: M 1 M → = ( x — x 1 , y — y 1 , z — z 1 ) , M 1 M 2 → = ( x 2 — x 1 , y 2 — y 1 , z 2 — z 1 ) и M 1 M 3 → = ( x 3 — x 1 , y 3 — y 1 , z 3 — z 1 ) .

У нас получился нормальный вектор плоскости, которая проходит через три искомые точки: n → = ( — 5 , 30 , 2 ) . Далее нам нужно взять одну из точек, например, M 1 ( — 3 , 2 , — 1 ) , и записать уравнение для плоскости с вектором n → = ( — 5 , 30 , 2 ) . Мы получим, что: — 5 · ( x — ( — 3 ) ) + 30 · ( y — 2 ) + 2 · ( z — ( — 1 ) ) = 0 ⇔ — 5 x + 30 y + 2 z — 73 = 0

А как быть, если заданные точки все же лежат на одной прямой и нам нужно составить уравнение плоскости для них? Здесь сразу надо сказать, что это условие будет не совсем корректным. Через такие точки может проходить бесконечно много плоскостей, поэтому вычислить один-единственный ответ невозможно. Рассмотрим такую задачу, чтобы доказать некорректность подобной постановки вопроса.

В рамках этого материала мы разберем, как найти уравнение плоскости, если мы знаем координаты трех различных ее точек, которые не лежат на одной прямой. Для этого нам понадобится вспомнить, что такое прямоугольная система координат в трехмерном пространстве. Для начала мы введем основной принцип данного уравнения и покажем, как именно использовать его при решении конкретных задач.

Если у нас есть множество точек M ( x , y , z ) , то в прямоугольной системе координат они определяют плоскость для заданных точек M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) только в том случае, когда векторы M 1 M → = ( x — x 1 , y — y 1 , z — z 1 ) , M 1 M 2 → = ( x 2 — x 1 , y 2 — y 1 , z 2 — z 1 ) и M 1 M 3 → = ( x 3 — x 1 , y 3 — y 1 , z 3 — z 1 ) будут компланарными.

На самом деле это разновидность предыдущего способа, смотрим на картинку:

Если известны три различные точки, не лежащие на одной прямой, то легко найти два неколлинеарных вектора, параллельных данной плоскости:

Эту жёсткую конструкцию вектора нормали и точки хорошо знает мишень для игры в дартс. Пожалуйста, вытяните руку вперёд и мысленно выберите произвольную точку пространства, например, маленькую кошечку в серванте. Очевидно, что через данную точку можно провести единственную плоскость, перпендикулярную вашей руке.

Ряд теоретических выкладок и практических задач справедливы как для привычного ортонормированного базиса, так и для аффинного базиса пространства (если масло — масляное, вернитесь к уроку Линейная (не) зависимость векторов. Базис векторов). Для простоты будем полагать, что все события происходят в ортонормированном базисе и декартовой прямоугольной системе координат.

Принципиально ситуация выглядит так:

Обратите внимание, что точка и два коллинеарных вектора не определят плоскость однозначно (векторы будут свободно «вертеться» вокруг точки и зададут бесконечно много плоскостей).

Третий, самый распространённый случай, когда две плоскости пересекаются по некоторой прямой :

Две плоскости пересекаются тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны, то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства

1. Перейти от общего уравнения плоскости (4.15) к уравнению «в отрезках» (4.22) можно при условии, что все коэффициенты общего уравнения отличны от нуля. Для этого нужно перенести свободный член в правую часть уравнения: , а затем разделить обе части уравнения на

2. Уравнения (4.21), (4.22), полученные в прямоугольной системе координат, имеют тот же вид в любой другой аффинной системе координат. Геометрический смысл коэффициентов в уравнениях остается прежним, однако величины и в общем случае не равны длинам отсекаемых отрезков и .

Общее уравнение плоскости

Каждая прямая будет перпендикулярной к плоскости, если она перпендикулярна относительно прямой, принадлежащей данной плоскости. Это значит, что каждый нормальный вектор, соответствующий исходной плоскости, будет перпендикуляром к нулевому вектору, принадлежащему плоскости. Это является доказательством теоремы, которая будет определять вид общего уравнения плоскости.

  1. Сначала получаем общее уравнение для плоскости, которая будет проходить через точку и саму плоскость.
  2. Затем мы доказываем, что данное уравнение можно использовать для действительных чисел, чтобы доказать, что оно будет определять плоскость V, Z и D.
  • Действительно, пусть это будет прямая линия.
  • Возьмите отдельно точку А.
  • Через А и данную прямую а проходит плоскость М.
  • Возьмем точку B, лежащую вне данной плоскости М.
  • Через данную точку В и прямую линию также будет проходить плоскость N, которая может не совпадать с М. Это связано с тем, что она имеет точку B и она не принадлежит к М плоскости.
  • Мы можем взять другую точку С в пространстве за плоскости М и N.
  • Через точку С и прямой пройдет новая плоскость, например Р. Она не совпадет с М, ни с N, потому что содержит точку С, которая не принадлежит плоскости М и плоскости N.

Все геометрические плоскости обычно прописывают прописными буквами греческого алфавита, а прямые обозначают большими буквами. Иногда для обозначения плоскости используют греческий алфавит, но с подстрочными индексами снизу. Чтобы изобразить плоскость, необходимо нарисовать параллелограмм, который создаст впечатление плоскости в пространстве.

  1. Можно нарисовать плоскость, имеющую прямую линию и точку за ней. Действительно утверждение, что точка вне прямой линии вместе с любыми двумя точками, лежащими на прямой, буду образовывать три точки, через которые может пройти новая плоскость.
  2. Через две пересекающиеся линии можно провести единственную плоскость. Если взять точку пересечения и еще одну точку на прямой, то получим 3 точки, через которые можно будет провести единственную плоскость.
  3. Только одну плоскость можно нарисовать двумя параллельными линиями. Доказано, что две параллельные прямые по определению лежат в одной плоскости. Эта плоскость уникальна, потому что не более одной плоскости можно провести через одну параллельную плоскость и одну точку в другую.
  4. Вращение плоскости по прямой. Поэтому можно провести бесчисленное количество плоскостей через любую линию в пространстве.
Рекомендуем прочесть:  Какие льготы положены работающим в зоне с правом на отселение

1. Перейти от общего уравнения плоскости (4.15) к уравнению «в отрезках» (4.22) можно при условии, что все коэффициенты общего уравнения отличны от нуля. Для этого нужно перенести свободный член в правую часть уравнения: , а затем разделить обе части уравнения на

2. Уравнения (4.21), (4.22), полученные в прямоугольной системе координат, имеют тот же вид в любой другой аффинной системе координат. Геометрический смысл коэффициентов в уравнениях остается прежним, однако величины и в общем случае не равны длинам отсекаемых отрезков и .

Решение задач по математике онлайн

Рассмотрим произвольную точку М(х; у; z). Точка М лежит на плоскости \( \pi \) тогда и только тогда, когда векторы \( \vec \) и \( \vec \) взаимно перпендикулярны. Так как координаты вектора \( \vec \) равны \( x-x_0, \; y-y_0, \; z-z_0 \) , то в силу условия перпендикулярности двух векторов (скалярное произведение должно быть равно нулю) получаем, что точка М (х; у; z) лежит на плоскости \( \pi \) тогда и только тогда, когда

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Верно и обратное: всякое уравнение первой степени вида (2) определяет в заданной прямоугольной системе координат плоскость. Действительно, пусть заданы прямоугольная система координат Oxyz и уравнение \( Ax+By+Cz+D=0 \) с произвольными коэффициентами А, В, С и D, причем из коэффициентов А, В и С хотя бы один отличен от нуля. Данное уравнение заведомо имеет хотя бы одно решение \( x_0, \; y_0, \; z_0 \) ( если, например, \( C \neq 0 \), то, взяв произвольные х, и y, из уравнения получим: \( z_0 = -\fracx_0 — \fracy_0-\frac \) ).

Таким образом, существует хотя бы одна точка M(x; y; z), координаты которой удовлетворяют уравнению, т.е. Ax+By+Cz+D=0. Вычитая это числовое равенство из уравнения Ax+By+Cz+D=0, получаем уравнение
A(x-x) + B(y-y) + C(z-z) + D=0,
эквивалентное данному. Полученное уравнение (а стало быть, и уравнение Ax+By+Cz+D=0 ) совпадает с уравнением (1) и, значит, определяет плоскость \( \pi \), проходящую через точку M(x и перпендикулярную вектору \( \vec(A;B;C) \).

Общее уравнение плоскости через 3 точки

В заключении рассмотрим решение примера, в котором требуется составить уравнение плоскости, проходящей через три заданные точки, которые лежат на одной прямой. Сразу отметим, что эта задача не корректна (то есть, имеет не единственное решение), так как существует бесконечное множество плоскостей, проходящих через заданную прямую. Обычно такие задачи получаются из-за опечатки в условии. Такую задачу мы приводим лишь для того, чтобы вы посмотрели, что происходит при ее решении разобранными способами, и знали, как быть в этом случае.

Общее уравнение плоскости через 3 точки

Пусть нужно найти уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой. Обозначая их радиусы-векторы через а текущий радиус-вектор через , мы легко получим искомое уравнение в векторной форме. В самом деле, векторы , должны быть компланарны (они все лежат в искомой плоскости). Следовательно, векторно-скалярное произведение этих векторов должно быть равно нулю:

Если бы три данные точки лежали на одной прямой, то векторы были бы коллинеарны. Поэтому соответствующие элементы двух последних строк определителя, стоящего в уравнении (18), были бы пропорциональны и определитель тождественно равен нулю. Следовательно, уравнение (18) обращалось бы в тождество при любых значениях х, у и z. Геометрически это значит, что через каждую точку пространства проходит плоскость, в которой лежат и три данные точки.

Замечание 2. Задача о проведении плоскости через три данные точки, не лежащие на одной прямой, легко решается в общем виде, если воспользоваться определителями. Действительно, так как в уравнениях (17) и (19) коэффициенты А, В, С не могут быть одновременно равны нулю, то, рассматривая эти уравнения как однородную систему с тремя неизвестными А, В, С, пишем необходимое и достаточное условие существования решения этой системы, отличного от нулевого (ч. 1, гл. VI, § 6):

В этом последнем можно также убедиться и непосредственно, если подставить в уравнение, записанное с помощью определителя, координаты любой из данных точек вместо . В левой части получается определитель, у которого либо элементы первой строки нули, либо имеются две одинаковые строки. Таким образом, составленное уравнение представляет плоскость, проходящую через три данные точки.

Построить плоскость по уравнению онлайн – 3D Calculator; GeoGebra

А хочется получить все таки решение, где все значения в целых числах, рекомендую перевести числа в дробь. Для этого достаточно посетить материал Непрерывные, цепные дроби онлайн или в случае когда результат получается неудовлетоврительный, Вычисление приближенной правильной дроби и каждое дробное значение превратить в дробь.

Если известна какая-нибудь точка плоскости P и какой-нибудь вектор нормали к ней, то этими двумя условиями плоскость в пространстве вполне определена (через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору). Общее уравнение плоскости будет иметь вид:

Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Уравнение плоскости для 3 точек используется при применении метода координат для решения сложных задач. Данного рода уравнения не особо отличаются от уравнений прямой на плоскости, а именно оно и имеет вид:

Рекомендуем прочесть:  Помощь в рвп в москве

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через три точки, и уравнение плоскости, проходящей через одну точку и имеющий заданный нормаль плоскости. Дается подробное решение с пояснениями. Для построения уравнения плоскости выберите вариант задания исходных данных, введите координаты точек в ячейки и нажимайте на кнопку «Решить».

Параллельные плоскости мы уже разобрали, теперь поговорим о перпендикулярных плоскостях. Очевидно, что к любой плоскости можно провести бесконечно много перпендикулярных плоскостей, а для того, чтобы зафиксировать конкретную перпендикулярную плоскость, нужно задать две точки:

Проводить подобные рассуждения здОрово помогает схематический чертёж:

Для лучшего понимания задачи отложите вектор нормали от точки в плоскости .

Конструировать уравнение плоскости будем с помощью векторов и точек. Их должно быть как можно меньше, но достаточно, чтобы однозначно определить плоскость. Одним словом, красивая математическая лаконичность. Математика – царица наук, не стерва, но строгА. А уж насколько доступна, во многом зависит от вашего к ней отношения =)

Третий, самый распространённый случай, когда две плоскости пересекаются по некоторой прямой :

Две плоскости пересекаются тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны, то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства

Выглядит значительно привлекательнее, чем предыдущие мытарства. В некоторых задачах аналитической геометрии уравнение плоскости можно составить несколькими способами, и решение через точку и нормальный вектор – самое оптимальное.

Различные виды уравнений плоскости в пространстве

Выведем уравнение плоскости Q. При любом расположении точки М на плоскости Q векторы п и ДМК взаимно перпендикулярны, поэтому их скалярное произведение равно нулю: п • ДМК = 0, т е , А (х-®0) + В (у-у0) + С (z-z0) = 0. (1) Координаты любой точки плоскости Q удовлетворяют (1), координаты точек, не лежащих на плоскости Q, этому уравнению не удовлетворяют (для них п • Л / о М ф 0).

Уравнение (1) называется уравнением плоскости, проходящей через данную точку Mq (хо \ уо; ZQ) .перпендикулярно вектору п =. (Л; В; С) Оно первой степени относительно текущих координат ху у и г. Вектор п — (А \ В \ С) называется нормальным вектором плоскости. .. Придавая коэффициентам А, В и С уравнения (1) различные значения, можно получить уравнение любой плоскости, проходящей через точку Mq Совокупность плоскостей, проходящих через данную точку, называется связкой плоскостей а уравнение (1) — уравнением связки плоскостей.

21) Эти векторы лежат на плоскости Q, следовательно, они компланарны Используем условие компланарности трех векторов (их смешанное произведение равно нулю), получаем М \ М • М \ М2 • М \ М $ = 0, т. х-хх у-т / 1 z- Zi Xl -XI У2- У \ z2-Zi Хг -Xl 2/3-й Zt-Zi (4) = 0 Уравнение (4) есть уравнение плоскости, проходящее через три данные точки. 4. Уравнение плоскости в отрезках

Рассмотрим общее уравнение первой степени с тремя переменными х, у vi z: (2) Ax + By + Cz + D = 0. Не равны нулю, например, В и 0, пеме (3) Сравнивал уравнение (3) с уравнением (1), видим, что уравнения (2) и (3) являются уравнением плоскости с нормальным вектором п = (А; В) С), проходящей через точку М \ (0; — Q; 0 ). Итак, уравнение (2) определяет в системе координат Oxyz некоторую плоскость.

Уравнение плоскости в отрезках Пусть плоскость пересекается на осях Ох, Оу и Оз соответственно соответственно отрезки, Ъ и с, т. П. Проходис Подставляя координаты этих точек в уравнение (4), получаем Раскрыв определитель, у нас hex-abc + abz -f асу = 0, т. Е. Ящик -I- асу 4- abz = abc или — +! + — =! • (5) азбука Уравнение (5) называется уравнением плоскости в отрезках на осях.

Уравнение плоскости, проходящей через три точки

Размеры: 720 х 540 пикселей, формат: .jpg. Чтобы бесплатно скачать слайд для использования на уроке, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как. ». Скачать всю презентацию «Плоскость и прямая в пространстве.ppt» можно в zip-архиве размером 199 КБ.

«Отображение плоскости на себя» — Наложения и движения. Параллельный перенос. Центральная симметрия. Движение. Осевая симметрия. Любое движение является наложением. Поворот является движением, т.е.отображением плоскости на себя, сохраняющим расстояния. 1. Сегодня на уроке я узнал, что… 2. Мне понравилось… 3.Мне не понравилось… Поворот.

«Задачи на плоскости» — План урока. Дайте понятие угла между двумя плоскостями. Какая фигура называется двугранным углом? Задача № 7. Найдите градусную меру угла, под которым катет наклонен к плоскости. Свойство касательной и радиуса, проведенного в точку касания. Найдите градусную меру угла между плоскостями. Каково взаимное расположение граней двугранного угла и плоскости двугранного угла?

«Координаты на плоскости» — Х — абсцисса У — ордината. Вычислите: Ход урока. Игра Морской Бой. Алгоритм построения: Построим координатную плоскость. Отметим на координатной плоскости т.А(3;5), В(-2;8), С(-4;-3), Е(5;-5). Выстрелов:5 Попадений:3 Промахов:2 Убито:2 Ранено:1 Осталось:3. Координатная плоскость (урок изучения новой темы).

«Координатная плоскость 6 класс» — Рисование по координатам точек. 2. В каких координатных четвертях расположены точки: А(-2;6), В(4;-1), С(- 3;- 4), D(1;7), E(6;-7), F(- 5;-2), G(- 8 ;1) ? 1.Найдите и запишите координаты точек A,B, C,D: Точка S имеет абсциссу 3. Каково расположение точки S на координатной плоскости? Хотите научиться рисовать по координатам?

Общее уравнение плоскости через 3 точки

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно, что угол между нормальными векторами и плоскостей α1 и α2 равен одному из указанных смежных двугранных углов или . Поэтому . Т.к. и , то

Через каждую прямую в пространстве проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно представляют собой уравнения этой прямой.

Векторы и коллинеарны, поэтому найдётся такое число t, что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М, лежащей на прямой.

Координаты точки М1 получим из данной системы уравнений, придав одной из координат произвольное значение. Для отыскания направляющего вектора, заметим, что этот вектор должен быть перпендикулярен к обоим нормальным векторам и . Поэтому за направляющий вектор прямой l можно взять векторное произведение нормальных векторов:

Рекомендуем прочесть:  Величина Госпошлины В Суд Для Снятия Самозастроя Оф

Обозначим угол между плоскостями через :

Наклон плоскости однозначно определяется её вектором нормали, поэтому угол между плоскостями можно найти через угол между нормальными векторами данных плоскостей. А угол между векторами рассчитывается с помощью обыденной формулы, рассмотренной на уроке Скалярное произведение векторов:

На самом деле это разновидность предыдущего способа, смотрим на картинку:

Если известны три различные точки, не лежащие на одной прямой, то легко найти два неколлинеарных вектора, параллельных данной плоскости:

Выглядит значительно привлекательнее, чем предыдущие мытарства. В некоторых задачах аналитической геометрии уравнение плоскости можно составить несколькими способами, и решение через точку и нормальный вектор – самое оптимальное.

Обозначения: плоскости принято обозначать маленькими греческими буквами , видимо, чтобы не путать их с прямой на плоскости или с прямой в пространстве. Я привык использовать букву . На чертеже именно буква «сигма», а вовсе не дырочка. Хотя, дырявая плоскость, это, безусловно, весьма забавно.

Проводить подобные рассуждения здОрово помогает схематический чертёж:

Для лучшего понимания задачи отложите вектор нормали от точки в плоскости .

Если у нас есть множество точек M ( x , y , z ) , то в прямоугольной системе координат они определяют плоскость для заданных точек M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) только в том случае, когда векторы M 1 M → = ( x – x 1 , y – y 1 , z – z 1 ) , M 1 M 2 → = ( x 2 – x 1 , y 2 – y 1 , z 2 – z 1 ) и M 1 M 3 → = ( x 3 – x 1 , y 3 – y 1 , z 3 – z 1 ) будут компланарными.

У нас получился нормальный вектор плоскости, которая проходит через три искомые точки: n → = ( – 5 , 30 , 2 ) . Далее нам нужно взять одну из точек, например, M 1 ( – 3 , 2 , – 1 ) , и записать уравнение для плоскости с вектором n → = ( – 5 , 30 , 2 ) . Мы получим, что: – 5 · ( x – ( – 3 ) ) + 30 · ( y – 2 ) + 2 · ( z – ( – 1 ) ) = 0 ⇔ – 5 x + 30 y + 2 z – 73 = 0

1. Первый подход использует общее уравнение плоскости. В буквенном виде оно записывается как A ( x – x 1 ) + B ( y – y 1 ) + C ( z – z 1 ) = 0 . С его помощью можно задать в прямоугольной системе координат некую плоскость альфа, которая проходит через первую заданную точку M 1 ( x 1 , y 1 , z 1 ) . У нас получается, что нормальный вектор плоскости α будет иметь координаты A , B , C .

Вспомним правило: любой не равный нулю вектор данной плоскости является перпендикулярным нормальному вектору этой же плоскости. Тогда мы имеем, что n → будет перпендикулярным по отношению к векторам, составленным из исходных точек M 1 M 2 → и M 1 M 3 → . Тогда мы можем обозначить n → как векторное произведение вида M 1 M 2 → · M 1 M 3 → .

Это будет означать, что смешанное произведение векторов M 1 M → , M 1 M 2 → , M 1 M 3 → будет равно нулю: M 1 M → · M 1 M 2 → · M 1 M 3 → = 0 , поскольку это является основным условием компланарности: M 1 M → = ( x – x 1 , y – y 1 , z – z 1 ) , M 1 M 2 → = ( x 2 – x 1 , y 2 – y 1 , z 2 – z 1 ) и M 1 M 3 → = ( x 3 – x 1 , y 3 – y 1 , z 3 – z 1 ) .

Уравнение плоскости, формулы и примеры

Если известна какая-нибудь точка плоскости P и какой-нибудь вектор нормали к ней, то этими двумя условиями плоскость в пространстве вполне определена (через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору). Общее уравнение плоскости будет иметь вид:

5. При A = B = D = 0 уравнение (или z = 0) определяет координатную плоскость xOy, так как она параллельна плоскости xOy (A = B = 0) и проходит через начало координат (D = 0). Аналогично, уравнение y = 0 в пространстве определяет координатную плоскость xOz, а уравнение x = 0 — координатную плоскость yOz.

  1. Если А = 0, В ≠ 0, С ≠ 0, или А ≠ 0, В = 0, С ≠0, или А ≠ 0, В ≠ 0, С = 0, то общие уравнения плоскостей имеют вид соответственно: By+Cz+D=0, или Ax+Cz+D=0, или Ax+By+D=0. Такие плоскости параллельны координатным осям Оx, Oy, Oz соответственно. Когда D=0, плоскости проходят через эти координатные оси соответственно. Также заметим, что неполные общие уравнения плоскостей By+Cz+D=0, Ax+Cz+D=0 и Ax+By+D=0 задают плоскости, которые перпендикулярны плоскостям Oyz, Oxz, Ozy соответственно.

Приведенное выше доказательство теоремы об общем уравнении дает нам возможность использовать важный факт: вектор n→=(A, B, C) — нормальный вектор для плоскости, определяемой уравнением Ax+By+Cz+D=0. Так, если нам известен вид общего уравнения, то возможно записать координаты нормального вектора заданной плоскости.

Любую плоскость, заданную в прямоугольной системе координат Oxyz трехмерного пространства, можно определить уравнением Ax + By + Cz + D = 0. В свою очередь, любое уравнение Ax + By + Cz + D = 0 определяет некоторую плоскость в данной прямоугольной системе координат трехмерного пространства. A, B, C, D – некоторые действительные числа, и числа A, B, C не равны одновременно нулю.

Уравнение плоскости, проходящей через три точки

\(\overrightarrowM>\), \(\overrightarrowM_2>\), \(\overrightarrowM_3>\) компланарны. Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения (§ 23*, теорема 2). Поэтому уравнение плоскости, проходящей через три точки, не лежащие на одной прямой, может быть записано следующим образом:

Из уравнения видно, что данная плоскость отсекает на осях координат отрезки, длины которых равны соответственно 6, 4 и 6. Ось Ох пересекается плоскостью в точке с отрицательной абсциссой, ось Оу — в точке с положительной ординатой, ось Оz — в точке с положительной апликатой.

Общее уравнение плоскости через 3 точки

Векторы и коллинеарны, поэтому найдётся такое число t, что , где множитель t может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М1 и М соответственно через и , получаем . Это уравнение называется векторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М, лежащей на прямой.

Под углом между двумя плоскостями будем понимать один из двугранных углов, образованных этими плоскостями. Очевидно, что угол между нормальными векторами и плоскостей α1 и α2 равен одному из указанных смежных двугранных углов или . Поэтому . Т.к. и , то

Через каждую прямую в пространстве проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно представляют собой уравнения этой прямой.

Координаты точки М1 получим из данной системы уравнений, придав одной из координат произвольное значение. Для отыскания направляющего вектора, заметим, что этот вектор должен быть перпендикулярен к обоим нормальным векторам и . Поэтому за направляющий вектор прямой l можно взять векторное произведение нормальных векторов:

Аналитическая геометрия на плоскости и в пространстве, страница 7

Решение. Пусть переменная точка Р(x, y, z) принадлежит искомой плоскости. Векторы , и (вектор нормали заданной плоскости) компланарны. Записывая условие компланарности этих векторов, получим в векторной форме уранение плоскости: . Запишем в координатной форме уравнение плоскости:

Решение. Заданные плоскости параллельны, т.к. . Находим на плоскости 6х + 4y – 10z – 18 = 0 точку, положив у = 0, z = 0, тогда 6х – 18 = 0, откуда х = 3. Найдём расстояние от точки Р(3, 0, 0) до плоскости 3х + 2y – 5z + 10 = 0: